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Introduction
In this introduction to functions of a complex variable we shall show how the operations of taking a
limit and of finding a derivative, which we are familiar with for functions of a real variable, extend in a
natural way to the complex plane. In fact the notation used for functions of a complex variable and
for complex operations is almost identical to that used for functions of a real variable. In effect, the
real variable x is simply replaced by the complex variable zzz. However, it is the interpretation of
functions of a complex variable and of complex operations that differs significantly from the real case.
In effect, a function of a complex variable is equivalent to two functions of a real variable and our
standard interpretation of a function of a real variable as being a curve on an xy plane no longer holds.

There are many situations in engineering which are described quite naturally by specifying two har-
monic functions of a real variable: a harmonic function is one satisfying the two-dimensional Laplace
equation:

∂2f

∂x2
+

∂2f

∂y2
= 0.

Fluids and heat flow in two dimensions are particular examples. It turns out that knowledge of
functions of a complex variable can significantly ease the calculations involved in this area.
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Prerequisites
Before starting this Section you should . . .

• understand how to use the polar and
exponential forms of a complex number

• be familiar with trigonometric relations,
hyperbolic and logarithmic functions

• be able to form a partial derivative

• be able to take a limit�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• explain the meaning of the term
analytic function

2 HELM (2008):
Workbook 26: Functions of a Complex Variable



®

1. Complex functions
Let the complex variable z be defined by z = x + iy where x and y are real variables and i is, as
usual, given by i2 = −1. Now let a second complex variable w be defined by w = u + iv where u
and v are real variables. If there is a relationship between w and z such that to each value of z in a
given region of the z−plane there is assigned one, and only one, value of w then w is said to be a
function of z, defined on the given region. In this case we write

w = f(z).

As a example consider w = z2 − z, which is defined for all values of z (that is, the right-hand side
can be computed for every value of z). Then, remembering that z = x + iy,

w = u + iv = (x + iy)2 − (x + iy) = x2 + 2ixy − y2 − x− iy.

Hence, equating real and imaginary parts: u = x2 − x− y2 and v = 2xy − y.

If z = 2 + 3i, for example, then x = 2, y = 3 so that u = 4 − 2 − 9 = −7 and v = 12 − 3 = 9,
giving w = −7 + 9i.

Example 1
(a) For which values of z is w =

1

z
defined?

(b) For these values obtain u and v and evaluate w when z = 2− i.

Solution

(a) w is defined for all z 6= 0.

(b) u + iv =
1

x + iy
=

1

x + iy
· x− iy

x− iy
=

x− iy

x2 + y2
. Hence u =

x

x2 + y2
and v =

−y

x2 + y2
.

If z = 2− i then x = 2, y = −1 so that x2 + y2 = 5. Then u =
2

5
, v = −1

5
and w =

2

5
− 1

5
i.

2. The limit of a function
The limit of w = f(z) as z → z0 is a number ` such that |f(z) − `| can be made as small as we
wish by making |z − z0| sufficiently small. In some cases the limit is simply f(z0), as is the case for
w = z2 − z. For example, the limit of this function as z → i is f(i) = i2 − i = −1− i.

There is a fundamental difference from functions of a real variable: there, we could approach a point
on the curve y = g(x) either from the left or from the right when considering limits of g(x) at such
points. With the function f(z) we are allowed to approach the point z = z0 along any path in the
z-plane; we require merely that the distance |z − z0| decreases to zero.
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Suppose that we want to find the limit of f(z) = z2 − z as z → 2 + i along each of the paths (a),
(b) and (c) indicated in Figure 1.

z01

2

(a)

(b)

(c)

x

y

Figure 1

(a) Along this path z = x + i (for any x) and z2 − z = x2 + 2xi− 1− x− i

That is: z2 − z = x2 − 1− x + (2x− 1)i.

As z → 2 + i, then x → 2 so that the limit of z2 − z is 22 − 1− 2 + (4− 1)i = 1 + 3i.

(b) Here z = 2 + yi (for any y) so that z2 − z = 4− y2 − 2 + (4y − y)i.

As z → 2 + i, y → 1 so that the limit of z2 − z is 4− 1− 2 + (4− 1)i = 1 + 3i.

(c) Here z = k(2 + i) where k is a real number. Then

z2 − z = k2(4 + 4i− 1)− k(2 + i) = 3k2 − 2k + (4k2 − k)i.

As z → 2 + i, k → 1 so that the limit of z2 − z is 3− 2 + (4− 1)i = 1 + 3i.

In each case the limit is the same.

Task

Evaluate the limit of f(z) = z2 + z + 1 as z → 1 + 2i along the paths

(a) parallel to the x-axis coming from the right,

(b) parallel to the y-axis, coming from above,

(c) the line joining the point 1 + 2i to the origin, coming from the origin.

Your solution

4 HELM (2008):
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Answer
(a) Along this path z = x+2i and z2 + z +1 = x2− 4+x+1+(4x+2)i. As z → 1+2i, x → 1

and z2 + z + 1 → −1 + 6i.

(b) Along this path z = 1 + yi
and z2 + z + 1 = 1− y2 + 1 + 1 + (2y + y)i. As z → 1 + 2i, y → 2 and z2 + z + 1 → −1 + 6i.

(c) If z = k(1 + 2i) then z2 + z + 1 = k2 + k + 1− 4k2 + (4k2 + 2k)i. As z → 1 + 2i, k → 1
and z2 + z + 1 → −1 + 6i.

Not all functions of a complex variable are as straightforward to analyse as the last two examples.

Consider the function f(z) =
z̄

z
. Along the x-axis moving towards the origin from the right

z = x and z̄ = x so that f(z) = 1 which is the limit as z → 0 along this path.

However, we can approach the origin along any path. If instead we approach the origin along the
positive y-axis z = iy then

z̄ = −iy and f(z) =
z̄

z
= −1, which is the limit as z → 0 along this path.

Since these two limits are distinct then lim
z→0

z̄

z
does not exist.

We cannot assume that the limit of a function f(z) as z → z0 is independent of the path chosen.

Definition of continuity
The function f(z) is continuous as z → z0 if the following two statements are true:

(a) f(z0) exists;

(b) lim
z→z0

f(z) exists and is equal to f(z0).

As an example consider f(z) =
z2 + 4

z2 + 9
. As z → i, then f(z) → f(i) =

i2 + 4

i2 + 9
=

3

8
. Thus f(z) is

continuous at z = i.

However, when z2 + 9 = 0 then z = ±3i and neither f(3i) nor f(−3i) exists. Thus
z2 + 4

z2 + 9
is

discontinuous at z = ±3i. It is easily shown that these are the only points of discontinuity.

Task

State where f(z) =
z

z2 + 4
is discontinuous. Find lim

z→i
f(z).

Your solution
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Answer
z2 + 4 = 0 where z = ±2i; at these points f(z) is discontinuous as f(±2i) does not exist.

lim
z→i

f(z) = f(i) =
i

i2 + 4
=

1

3
i.

It is easily shown that any polynomial in z is continuous everywhere whilst any rational function is
continuous everywhere except at the zeroes of the denominator.

Exercises

1. For which values of z is w =
1

z − i
defined? For these values obtain u and v and evaluate w

when z = 1− 2i.

2. Find the limit of f(z) = z3 + z as z → i along the paths (a) parallel to the x-axis coming from
the right, (b) parallel to the y-axis coming from above.

3. Where is f(z) =
z

z2 + 9
discontinuous?. Find the lim

z→−i
f(z).

Answers

1. w is defined for all z 6= i w =
1

x + yi− i
=

1

x + (y − 1)i
×x− (y − 1)i

x− (y − 1)i
=

x− (y − 1)i

x2 + (y − 1)2
.

∴ u =
x

x2 + (y − 1)2
, v =

−(y − 1)

x2 + (y − 1)2
.

When z = 1− 2i, x = 1, y = −2 so that u =
1

1 + 9
=

1

10
, v =

3

10
, z =

1

10
+

3

10
i

2. (a) z = x + i, z3 + z = x3 + 3x2i− 2x. As z → i, x → 0 and z3 + z → 0

(b) z = yi, z3 + z = −y3i + yi. As z → i, y → 1 and z3 + z → −i + i = 0.

3. f(z) is discontinuous at z = ±3i. The limit is f(−i) =
−i

−1 + 9
= −1

8
i.

3. Differentiating functions of a complex variable
The function f(z) is said to be differentiable at z = z0 if

lim
∆z→0

{
f(z0 + ∆z)− f(z0)

∆z

}
exists. Here ∆z = ∆x + i∆y.

Apart from a change of notation this is precisely the same as the definition of the derivative of a
function of a real variable. Not surprisingly then, the rules of differentiation used in functions of a
real variable can be used to differentiate functions of a complex variable. The value of the limit is
the derivative of f(z) at z = z0 and is often denoted by df

dz
|z=z0 or by f ′(z0).

A point at which the derivative does not exist is called a singular point of the function.

6 HELM (2008):
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A function f(z) is said to be analytic at a point z0 if it is differentiable throughout a neighbourhood
of z0, however small. (A neighbourhood of z0 is the region contained within some circle |x−z0| = r.)

For example, the function f(z) =
1

z2 + 1
has singular points where z2 + 1 = 0, i.e. at z = ±i.

For all other points the usual rules for differentiation apply and hence

f ′(z) = − 2z

(z2 + 1)2
(quotient rule)

So, for example, at z = 3i, f ′(z) = − 6i

(−9 + 1)2
= − 3

32
i.

Example 2
Find the singular point of the rational function f(z) =

z

z + i
. Find f ′(z) at other

points and evaluate f ′(2i).

Solution

z+ i = 0 when z = −i and this is the singular point: f(−i) does not exist. Elsewhere, differentiating
using the quotient rule:

f ′(z) =
(z + i) · 1− z · 1

(z + i)2
=

i

(z + i)2
. Thus at z = 2i, we have f ′(z) =

i

(3i)2
= −1

9
i.

The simple function f(z) = z̄ = x − iy is not analytic anywhere in the complex plane. To see this
consider looking at the derivative at an arbitrary point z0. We easily see that

R =
f(z0 + ∆z)− f(z0)

∆z

=
(x0 + ∆x)− i(y0 + ∆y)− (x0 − iy0)

∆x + i∆y
=

∆x− i ∆y

∆x + i ∆y

Hence f(z) will fail to have a derivative at z0 if we can show that this expression has no limit. To
do this we consider looking at the limit of the function along two distinct paths.

Along a path parallel to the x-axis:

∆y = 0 so that R =
∆x

∆x
= 1, and this is the limit as ∆z = ∆x → 0.

Along a path parallel to the y-axis:

∆x = 0 so that R =
−i ∆y

i∆y
= −1, and this is the limit as ∆z = ∆y → 0.

As these two values of R are distinct, the limit of
f(z + ∆z)− f(z)

∆z
as z → z0 does not exist

and so f(z) fails to be differentiable at any point. Hence it is not analytic anywhere.
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Cauchy-Riemann
Equations and
Conformal Mapping

�
�

�
�26.2

Introduction
In this Section we consider two important features of complex functions. The Cauchy-Riemann
equations provide a necessary and sufficient condition for a function f(z) to be analytic in some
region of the complex plane; this allows us to find f ′(z) in that region by the rules of the previous
Section.

A mapping between the z-plane and the w-plane is said to be conformal if the angle between two
intersecting curves in the z-plane is equal to the angle between their mappings in the w-plane. Such
a mapping has widespread uses in solving problems in fluid flow and electromagnetics, for example,
where the given problem geometry is somewhat complicated.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand the idea of a complex function
and its derivative

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use the Cauchy-Riemann equations to obtain
the derivative of complex functions

• appreciate the idea of a conformal mapping

8 HELM (2008):
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1. The Cauchy-Riemann equations
Remembering that z = x + iy and w = u + iv, we note that there is a very useful test to determine
whether a function w = f(z) is analytic at a point. This is provided by the Cauchy-Riemann
equations. These state that w = f(z) is differentiable at a point z = z0 if, and only if,

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
at that point.

When these equations hold then it can be shown that the complex derivative may be determined by

using either
df

dz
=

∂f

∂x
or

df

dz
= −i

∂f

∂y
.

(The use of ‘if, and only if,’ means that if the equations are valid, then the function is differentiable
and vice versa.)

If we consider f(z) = z2 = x2 − y2 + 2ixy then u = x2 − y2 and v = 2xy so that

∂u

∂x
= 2x,

∂u

∂y
= −2y,

∂v

∂x
= 2y,

∂v

∂y
= 2x.

It should be clear that, for this example, the Cauchy-Riemann equations are always satisfied; therefore,
the function is analytic everywhere. We find that

df

dz
=

∂f

∂x
= 2x + 2iy = 2z or, equivalently,

df

dz
= −i

∂f

∂y
= −i(−2y + 2ix) = 2z

This is the result we would expect to get by simply differentiating f(z) as if it was a real function.
For analytic functions this will always be the case i.e. for an analytic function f ′(z) can be
found using the rules for differentiating real functions.

Example 3
Show that the function f(z) = z3 is analytic everwhere and hence obtain its
derivative.

Solution

w = f(z) = (x + iy)3 = x3 − 3xy2 + (3x2y − y3)i

Hence

u = x3 − 3xy2 and v = 3x2y − y3.

Then

∂u

∂x
= 3x2 − 3y2,

∂u

∂y
= −6xy,

∂v

∂x
= 6xy,

∂v

∂y
= 3x2 − 3y2.

The Cauchy-Riemann equations are identically true and f(z) is analytic everywhere.

Furthermore
df

dz
=

∂f

∂x
= 3x2 − 3y2 + (6xy)i = 3(x + iy)2 = 3z2 as we would expect.

We can easily find functions which are not analytic anywhere and others which are only analytic in
a restricted region of the complex plane. Consider again the function f(z) = z̄ = x− iy.

HELM (2008):
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Here

u = x so that
∂u

∂x
= 1, and

∂u

∂y
= 0; v = −y so that

∂v

∂x
= 0,

∂v

∂y
= −1.

The Cauchy-Riemann equations are never satisfied so that z̄ is not differentiable anywhere and so is
not analytic anywhere.

By contrast if we consider the function f(z) =
1

z
we find that

u =
x

x2 + y2
; v =

y

x2 + y2
.

As can readily be shown, the Cauchy-Riemann equations are satisfied everywhere except for x2+y2 =

0, i.e. x = y = 0 (or, equivalently, z = 0.) At all other points f ′(z) = − 1

z2
. This function is analytic

everywhere except at the single point z = 0.

Analyticity is a very powerful property of a function of a complex variable. Such functions tend to
behave like functions of a real variable.

Example 4
Show that if f(z) = zz̄ then f ′(z) exists only at z = 0.

Solution

f(z) = x2 + y2 so that u = x2 + y2, v = 0.
∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
= 0,

∂v

∂y
= 0.

Hence the Cauchy-Riemann equations are satisfied only where x = 0 and y = 0, i.e. where z = 0.
Therefore this function is not analytic anywhere.

Analytic functions and harmonic functions
Using the Cauchy-Riemann equations in a region of the z-plane where f(z) is analytic, gives

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
=

∂

∂x

(
− ∂v

∂x

)
= −∂2v

∂x2

and

∂2u

∂y∂x
=

∂

∂y

(
∂u

∂x

)
=

∂

∂y

(
∂v

∂y

)
=

∂2v

∂y2
.

If these differentiations are possible then
∂2u

∂x∂y
=

∂2u

∂y∂x
so that

∂2u

∂x2
+

∂2u

∂y2
= 0 (Laplace’s equation)

In a similar way we find that

∂2v

∂x2
+

∂2v

∂y2
= 0 (Can you show this?)

10 HELM (2008):
Workbook 26: Functions of a Complex Variable



®

When f(z) is analytic the functions u and v are called conjugate harmonic functions.

Suppose u = u(x, y) = xy then it is easy to verify that u satisfies Laplace’s equation (try this). We
now try to find the conjugate harmonic function v = v(x, y).

First, using the Cauchy-Riemann equations:

∂v

∂y
=

∂u

∂x
= y and

∂v

∂x
= −∂u

∂y
= −x.

Integrating the first equation gives v =
1

2
y2+ a function of x. Integrating the second equation

gives v = −1

2
x2+ a function of y. Bearing in mind that an additive constant leaves no trace after

differentiation, we pool the information above to obtain

v =
1

2
(y2 − x2) + C where C is a constant

Note that f(z) = u + iv = xy +
1

2
(y2 − x2)i + D where D is a constant (replacing C i).

We can write f(z) = −1

2
iz2 + D (as you can verify). This function is analytic everywhere.

Task

Given the function u = x2 − x− y2

(a) Show that u is harmonic, (b) Find the conjugate harmonic function, v.

Your solution

(a)

Answer

∂u

∂x
= 2x− 1,

∂2u

∂x2
= 2,

∂u

∂y
= −2y,

∂2u

∂y2
= −2.

Hence
∂2u

∂x2
+

∂2u

∂y2
= 0 and u is harmonic.

Your solution

(b)

HELM (2008):
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Answer

Integrating
∂v

∂y
= 2x− 1 gives v = 2xy − y+ function of x.

Integrating
∂v

∂x
= +2y gives v = 2xy+ function of y.

Ignoring the duplication, v = 2xy − y + C, where C is a constant.

Task

Find f(z) in terms of z, where f(z) = u + iv, where u and v are those found in
the previous Task.

Your solution

Answer
f(z) = u + iv = x2 − x− y2 + 2xyi− iy + D, D constant.

Now z2 = x2 − y2 + 2ixy and z = x + iy thus f(z) = z2 − z + D.

Exercises

1. Find the singular point of the rational function f(z) =
z

z − 2i
. Find f ′(z) at other points and

evaluate f ′(−i).

2. Show that the function f(z) = z2 + z is analytic everywhere and hence obtain its derivative.

3. Show that the function u = x2 − y2 − 2y is harmonic, find the conjugate harmonic function v
and hence find f(z) = u + iv in terms of z.

Answers

1. f(z) is singular at z = 2i. Elsewhere

f ′(z) =
(z − 2i).1− z.1

(z − 2i)2
=

−2i

(z − 2i)2
f ′(−i) =

−2i

(−3i)2
=
−2i

−9
=

2

9
i

2. u = x2 + x− y2 and v = 2xy + y

∂u

∂x
= 2x + 1,

∂u

∂y
= −2y,

∂v

∂x
= 2y,

∂v

∂y
= 2x + 1

Here the Cauchy-Riemann equations are identically true and f(z) is analytic everywhere.

df

dz
=

∂f

∂x
= 2x + 1 + 2yi = 2z + 1

12 HELM (2008):
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Answer

3.
∂2u

∂x2
= 2,

∂2u

∂y2
= −2 therefore u is harmonic.

∂v

∂y
=

∂u

∂x
= 2x therefore v = 2xy+ function of y

∂v

∂x
= −∂u

∂y
= 2y + 2 therefore v = 2xy + 2x+ function of x

∴ v = 2xy + 2x + constant

f(z) = x2 + 2ixy − y2 + 2xi− 2y = z2 + 2iz

2. Conformal mapping
In Section 26.1 we saw that the real and imaginary parts of an analytic function each satisfies
Laplace’s equation. We shall show now that the curves

u(x, y) = constant and v(x, y) = constant

intersect each other at right angles (i.e. are orthogonal). To see this we note that along the curve
u(x, y) = constant we have du = 0. Hence

du =
∂u

∂x
dx +

∂u

∂y
dy = 0.

Thus, on these curves the gradient at a general point is given by

dy

dx
= −

∂u

∂x
∂u

∂y

.

Similarly along the curve v(x, y) = constant, we have

dy

dx
= −

∂v

∂x
∂v

∂y

.

The product of these gradients is

(
∂u

∂x
)(

∂v

∂x
)

(
∂u

∂y
)(

∂v

∂y
)

= −
(
∂u

∂x
)(

∂u

∂y
)

(
∂u

∂y
)(

∂u

∂x
)

= −1

where we have made use of the Cauchy-Riemann equations. We deduce that the curves are orthog-
onal.

HELM (2008):
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As an example of the practical application of this work consider two-dimensional electrostatics. If
u = constant gives the equipotential curves then the curves v = constant are the electric lines of
force. Figure 2 shows some curves from each set in the case of oppositely-charged particles near to
each other; the dashed curves are the lines of force and the solid curves are the equipotentials.

Figure 2

In ideal fluid flow the curves v = constant are the streamlines of the flow.

In these situations the function w = u + iv is the complex potential of the field.

Function as mapping
A function w = f(z) can be regarded as a mapping, which maps a point in the z-plane to a point
in the w-plane. Curves in the z-plane will be mapped into curves in the w-plane.

Consider aerodynamics where we are interested in the fluid flow in a complicated geometry (say flow
past an aerofoil). We first find the flow in a simple geometry that can be mapped to the aerofoil
shape (the complex plane with a circular hole works here). Most of the calculations necessary to find
physical characteristics such as lift and drag on the aerofoil can be performed in the simple geometry
- the resulting integrals being much easier to evaluate than in the complicated geometry.

Consider the mapping

w = z2.

The point z = 2 + i maps to w = (2 + i)2 = 3 + 4i. The point z = 2 + i lies on the intersection of
the two lines x = 2 and y = 1. To what curves do these map? To answer this question we note that
a point on the line y = 1 can be written as z = x + i. Then

w = (x + i)2 = x2 − 1 + 2xi

As usual, let w = u + iv, then

u = x2 − 1 and v = 2x

Eliminating x we obtain:

4u = 4x2 − 4 = v2 − 4 so v2 = 4 + 4u is the curve to which y = 1 maps.

14 HELM (2008):
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Example 5
Onto what curve does the line x = 2 map?

Solution

A point on the line is z = 2 + yi. Then

w = (2 + yi)2 = 4− y2 + 4yi

Hence u = 4− y2 and v = 4y so that, eliminating y we obtain

16u = 64− v2 or v2 = 64− 16u

In Figure 3(a) we sketch the lines x = 2 and y = 1 and in Figure 3(b) we sketch the curves into
which they map. Note these curves intersect at the point (3, 4).

y

x

y = 1

x = 2

(2, 1)

(3, 4)

v2 = 4 + 4u

v2 = 64 − 16u

u

v

(a) (b)

Figure 3

The angle between the original lines in (a) is clearly 900; what is the angle between the curves in (b)
at the point of intersection?

The curve v2 = 4 + 4u has a gradient
dv

du
. Differentiating the equation implicitly we obtain

2v
dv

du
= 4 or

dv

du
=

2

v

At the point (3, 4)
dv

du
=

1

2
.
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Task

Find
dv

du
for the curve v2 = 64− 16u and evaluate it at the point (3, 4).

Your solution

Answer

2v
dv

du
= −16 ∴

dv

du
= −8

v
. At v = 4 we obtain

dv

du
= −2.

Note that the product of the gradients at (3, 4) is −1 and therefore the angle between the curves at
their point of intersection is also 900. Since the angle between the lines and the angle between the
curves is the same we say the angle is preserved.

In general, if two curves in the z-plane intersect at a point z0, and their image curves under the
mapping w = f(z) intersect at w0 = f(z0) and the angle between the two original curves at z0

equals the angle between the image curves at w0 we say that the mapping is conformal at z0.

An analytic function is conformal everywhere except where f ′(z) = 0.

Task

At which points is w = ez not conformal?

Your solution

Answer

f ′(z) = ez. Since this is never zero the mapping is conformal everywhere.

Inversion
The mapping w = f(z) =

1

z
is called an inversion. It maps the interior of the unit circle in the

z-plane to the exterior of the unit circle in the w-plane, and vice-versa. Note that

w = u + iv =
x

x2 + y2
− y

x2 + y2
i and similarly z = x + iy =

u

u2 + v2
− v

u2 + v2
i

so that

u =
x

x2 + y2
and v = − y

x2 + y2
.
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A line through the origin in the z-plane will be mapped into a line through the origin in the w-plane.
To see this, consider the line y = mx, for m constant. Then

u =
x

x2 + m2x2
and v = − mx

x2 + m2x2

so that v = −mu, which is a line through the origin in the w-plane.

Task

Consider the line ax + by + c = 0 where c 6= 0. This represents a line in the
z-plane which does not pass through the origin. To what type of curve does it
map in the w-plane?

Your solution

Answer
The mapped curve is

au

u2 + v2
− bv

u2 + v2
+ c = 0

Hence au− bv + c(u2 + v2) = 0. Dividing by c we obtain the equation:

u2 + v2 +
a

c
u− b

c
v = 0

which is the equation of a circle in the w-plane which passes through the origin.

Similarly, it can be shown that a circle in the z-plane passing through the origin maps to a line in
the w-plane which does not pass through the origin. Also a circle in the z-plane which does not pass
through the origin maps to a circle in the w-plane which does pass through the origin. The inversion
mapping is an example of the bilinear transformation:

w = f(z) =
az + b

cz + d
where we demand that ad− bc 6= 0

(If ad− bc = 0 the mapping reduces to f(z) = constant.)

Task

Find the set of bilinear transformations w = f(z) =
az + b

cz + d
which map z = 2 to

w = 1.

Your solution

HELM (2008):
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Answer

1 =
2a + b

2c + d
. Hence 2a + b = 2c + d.

Any values of a, b, c, d satisfying this equation will do provided ad− bc 6= 0.

Task

Find the bilinear transformations for which z = −1 is mapped to w = 3.

Your solution

Answer

3 =
−a + b

−c + d
. Hence −a + b = −3c + 3d.

Example 6
Find the bilinear transformation which maps

(a) z = 2 to w = 1, and

(b) z = −1 to w = 3, and

(c) z = 0 to w = −5

Solution

We have the answers to (a) and (b) from the previous two Tasks:

2a + b = 2c + d

−a + b = −3c + 3d

If z = 0 is mapped to w = −5 then −5 =
b

d
so that b = −5d. Substituting this last relation into

the first two obtained we obtain

2a− 2c− 6d = 0

−a + 3c− 8d = 0

Solving these two in terms of d we find 2c = 11d and 2a = 17d. Hence the transformation is:

w =
17z − 10

11z + 2
(note that the d’s cancel in the numerator and denominator).
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Some other mappings are shown in Figure 4.

z2

z3

z1/2

zα

π/3

π/α

z-plane w-plane

Figure 4

As an engineering application we consider the Joukowski transformation

w = z − `2

z
where ` is a constant.

It is used to map circles which contain z = 1 as an interior point and which pass through z = −1
into shapes resembling aerofoils. Figure 5 shows an example:

x

y

z-plane w-plane

u

v

−1 1

Figure 5

This creates a cusp at which the associated fluid velocity can be infinite. This can be avoided by
adjusting the fluid flow in the z-plane. Eventually, this can be used to find the lift generated by such
an aerofoil in terms of physical characteristics such as aerofoil shape and air density and speed.
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Exercise

Find a bilinear transformation w =
az + b

cz + d
which maps

(a) z = 0 into w = i

(b) z = −1 into w = 0

(c) z = −i into w = 1

Answer

(a) z = 0, w = i gives i =
b

d
so that b = di

(b) z = −1, w = 0 gives 0 =
−a + b

−c + d
so −a + b = 0 so a = b.

(c) z = −i, w = 1 gives 1 =
−ai + b

−ci + d
so that −ci + d = −ai + b = d + di (using (a) and (b))

We conclude from (c) that −c = d. We also know that a = b = di.

Hence w =
diz + di

−dz + d
=

iz + i

−z + 1
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Standard Complex
Functions

�
�

�
�26.3

Introduction
In this Section we examine some of the standard functions of the calculus applied to functions of
a complex variable. Note the similarities to and differences from their equivalents in real variable
calculus.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• understand the concept of a function of a
complex variable and its derivative

• be familiar with the Cauchy-Riemann
equations�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• apply the standard functions of a complex
variable discussed in this Section
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1. Standard functions of a complex variable
The functions which we have considered so far have mostly been built from powers of z. We consider
other functions here.

The exponential function
Using Euler’s relation we are led to define

ez = ex+iy = ex.eiy = ex(cos y + i sin y).

From this definition we can show readily that when y = 0 then ez reduces to ex, as it should.
If, as usual, we express w in real and imaginary parts then: w = ez = u + iv so that
u = ex cos y, v = ex sin y. Then

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x
.

Thus by the Cauchy-Riemann equations, eeezzz is analytic everywhere. It can be shown from the
definition that if f(z) = ez then f ′(z) = ez, as expected.

Task

By calculating |ez|2 show that |ez| = ex.

Your solution

Answer
|ez|2 = |ex cos y + iex sin y|2 = (ex cos y)2 + (ex sin y)2 = (ex)2(cos2 y + sin2 y) = (ex)2.

Therefore |ez| = ex.

Example 7
Find arg(ez).

Solution

If θ = arg(ez) = arg(ex(cos y + i sin y)) then tan θ =
ex sin y

ex cos y
= tan y. Hence arg(ez) = y.
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Example 8
Find the solutions (for z) of the equation ez = i

Solution

To find the solutions of the equation ez = i first write i as 0+1i so that, equating real and imaginary
parts of ez = ex(cos y + i sin y) = 0 + 1i gives , ex cos y = 0 and ex sin y = 1.

Therefore cos y = 0, which implies y =
π

2
+ kπ, where k is an integer. Then, using this we see that

sin y = ±1. But ex must be positive, so that sin y = +1 and ex = 1. This last equation has just
one solution, x = 0. In order that sin y = 1 we deduce that k must be even. Finally we have the
complete solution to ez = i, namely:

z =
(π

2
+ kπ

)
i, k an even integer.

Task

Obtain all the solutions to ez = −1.

First find equations involving ex cos y and ex sin y:

Your solution

Answer
As a first step to solving the equation ez = −1 obtain expressions for ex cos y and ex sin y from
ez = ex(cos y + i sin y) = −1 + 0i. Hence ex cos y = −1, ex sin y = 0.

Now using the expression for sin y deduce possible values for y and hence from the first equation in
cos y select the values of y satisfying both equations and deduce the form of the solutions for z:

Your solution

Answer
The two equations we have to solve are: ex cos y = −1, ex sin y = 0. Since ex 6= 0 we deduce
sin y = 0 so that y = kπ, where k is an integer. Then cos y = ±1 (depending as k is even or odd).
But ex 6= −1 so ex = 1 leading to the only possible solution for x: x = 0. Then, from the second
relation: cos y = −1 so k must be an odd integer. Finally, z = kπi where k is an odd integer. Note
the interesting result that if z = 0 + πi then x = 0, y = π and ez = 1(cos π + i sin π) = −1. Hence
eiπ = −1, a remarkable equation relating fundamental numbers of mathematics in one relation.
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Trigonometric functions

We denote the complex counterparts of the real trigonometric functions cos x and sin x by cos z and
sin z and we define these functions by the relations:

cos z ≡ 1

2
(eiz + e−iz), sin z ≡ 1

2i
(eiz − e−iz).

These definitions are consistent with the definitions (Euler’s relations) used for cos x and sin x.

Other trigonometric functions can be defined in a way which parallels real variable functions. For
example,

tan z ≡ sin z

cos z
.

Note that

d

dz
(sin z) =

d

dz

{
1

2i
(eiz − e−iz)

}
=

1

2i
(ieiz + ie−iz) =

1

2
(eiz + e−iz) = cos z.

Task

Show that
d

dz
(cos z) = − sin z.

Your solution

Answer

d

dz
(cos z) =

d

dz

{
1

2
(eiz + e−iz)

}
=

i

2
(eiz − e−iz) = − 1

2i
(eiz − e−iz) = − sin z.

Among other useful relationships are

sin2 z + cos2 z = −1

4
(eiz − e−iz)2 +

1

4
(eiz + e−iz)2

=
1

4
(−e2iz + 2− e−2iz + e2iz + 2 + e−2iz) =

1

4
· 4 = 1.
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Also, using standard trigonometric expansions:

sin z = sin(x + iy) = sin x cos iy + cos x sin iy = sin x

(
e−y + ey

2

)
+ cos x

(
e−y − ey

2i

)
= sin x cosh y − 1

i
cos x sinh y

= sin x cosh y + i cos x sinh y.

Task

Show that cos z = cos x cosh y − i sin x sinh y.

Your solution

Answer

cos z = cos(x + iy) = cos x cos iy − sin x sin iy = cos x

(
e−y + ey

2

)
− sin x

(
e−y − ey

2i

)
= cos x cosh y +

1

i
sin x sinh y

= cos x cosh y − i sin x sinh y

Hyperbolic functions
In an obvious extension from their real variable counterparts we define functions cosh z and sinh z
by the relations:

cosh z =
1

2
(ez + e−z), sinh z =

1

2
(ez − e−z).

Note that
d

dz
(sinh z) =

1

2

d

dz
(ez − e−z) =

1

2
(ez + e−z) = cosh z.
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Task

Determine
d

dz
(cosh z).

Your solution

Answer
d

dz
(cosh z) =

1

2

d

dz
(ez + e−z) =

1

2
(ez − e−z) = sinh z.

Other relationships parallel those for trigonometric functions. For example it can be shown that

cosh z = cosh x cos y + i sinh x sin y and sinh z = sinh x cos y + i cosh x sin y

These relationships can be deduced from the general relations between trigonometric and hyperbolic
functions (can you prove these?):

cosh iz = cos z and sinh iz = i sin z

Example 9
Show that cosh2 z − sinh2 z = 1.

Solution

cosh2 z =
1

4
(ez + e−z)2 =

1

4
(e2z + 2 + e−2z)

sinh2 z =
1

4
(ez − e−z)2 =

1

4
(e2z − 2 + e−2z)

∴ cosh2 z − sinh2 z =
1

4
(2 + 2) = 1.

Alternatively since cosh iz = cos z then cosh z = cos iz and since sinh iz = i sin z it follows that
sinh z = −i sin iz so that

cosh2 z − sinh2 z = cos2 iz + sin2 iz = 1
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Logarithmic function
Since the exponential function is one-to-one it possesses an inverse function, which we call ln z. If
w = u+ iv is a complex number such that ew = z then the logarithm function is defined through the
statement: w = ln z. To see what this means it will be convenient to express the complex number
z in exponential form as discussed in 10.3: z = reiθ and so

w = u + iv = ln(reiθ) = ln r + iθ.

Therefore u = ln r = ln |z| and v = θ. However ei(θ+2kπ) = eiθ.e2kπi = eiθ.1 = eiθ for integer k. This
means that we must be more general and say that v = θ + 2kπ, k integer. If we take k = 0 and
confine v to the interval −π < v ≤ π, the corresponding value of w is called the principal value of
ln z and is written Ln(z).

In general, to each value of z 6= 0 there are an infinite number of values of ln z, each with the same
real part. These values are partitioned into branches of range 2π by considering in turn k = 0,
k = ±1, k = ±2 etc. Each branch is defined on the whole z−plane with the exception of the point

z = 0. On each branch the function ln z is analytic with derivative
1

z
except along the negative real

axis (and at the origin). Figure 6 represents the situation schematically.

x

y

Figure 6

The familiar properties of a logarithm apply to ln z, except that in the case of Ln(z) we have to
adjust the argument by a multiple of 2π to comply with −π < arg(Ln(z)) ≤ π
For example

(a) ln(1 + i) = ln
(√

2eiπ
4

)
= ln

√
2 + i

(
π
4

+ 2kπ
)

=
1

2
ln 2 + i

(π

4
+ 2kπ

)
.

(b) Ln(1 + i) =
1

2
ln 2 + i

π

4
.

(c) If ln z = 1− iπ then z = e1−iπ = e1.e−iπ = −e.
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Task

Find (a) ln(1− i) (b) Ln(1− i) (c) z when ln z = 1 + iπ

Your solution

Answer

(a) ln(1− i) = ln
(√

2e−iπ
4

)
= ln

√
2 + i

(
−π

4
+ 2kπ

)
=

1

2
ln 2 +

(
−π

4
+ 2kπ

)
.

(b) Ln(1− i) =
1

2
ln 2− i

π

4
.

(c) z = e1+iπ = e1.eiπ = −e.

Exercises

1. Obtain all the solutions to ez = 1.

2. Show that 1 + tan2 z ≡ sec2 z

3. Show that cosh2 z + sinh2 z ≡ cosh 2z

4. Find ln(
√

3 + i), Ln(
√

3 + i).

5. Find z when ln z = 2 + πi

Answers

1. ex cos y = 1 and ex sin y = 0 ∴ sin y = 0 and y = kπ where k is an integer.

Then cos y = ±1 and since ex > 0 we take cos y = 1 and ex = 1 so that x = 0. Then
cos y = 1 and k is an even integer. ∴ z = 2kπi for k integer.

2. tan z =
1

i

(
eiz − e−iz

eiz + e−iz

)

1 + tan2 z = 1− e2iz + e−2iz − 2

e2iz + e−2iz + 2
=

4

e2iz + e−2iz + 2
=

22

(eiz + e−iz)2
=

1

cos2 z
= sec2 z.

3. cosh2 z + sinh2 z =
1

4
(e2z + 2 + e−2z) +

1

4
(e2z − 2 + e−2z) =

1

2
(e2z + e−2z) = cosh 2z.

4. ln(
√

3 + 1) = ln
√

5 + i(π
6

+ 2kπ) = 1
2
ln 5 + i(π

6
+ 2kπ). Ln(

√
3 + i) = 1

2
ln 5 + iπ

6
.

5. If ln z = 2 + πi then z = e2+πi = e2eiπ = −e2.
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Basic Complex
Integration

�
�

�
�26.4

Introduction
Complex variable techniques have been used in a wide variety of areas of engineering. This has
been particularly true in areas such as electromagnetic field theory, fluid dynamics, aerodynamics
and elasticity. With the rapid developments in computer technology and the consequential use of
sophisticated algorithms for analysis and design in engineering there has been, in recent years, less
emphasis on the use of complex variable techniques and a shift towards numerical techniques applied
directly to the underlying full partial differential equations which model the situation. However it
is useful to have an analytical solution, possibly for an idealized model in order to develop a better
understanding of the solution and to develop confidence in numerical estimates for the solution of
more sophisticated models.

The design of aerofoil sections for aircraft is an area where the theory was developed using complex
variable techniques. Throughout engineering, transforms defined as complex integrals in one form or
another play a major role in analysis and design. The use of complex variable techniques allows us
to develop criteria for the stability of systems.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be able to carry out integration of simple
real-valued functions

• be familiar with the basic ideas of functions
of a complex variable

• be familiar with line integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• understand the concept of complex integrals
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1. Complex integrals
If f(z) is a single-valued, continuous function in some region R in the complex plane then we define
the integral of f(z) along a path C in R (see Figure 7) as∫

C

f(z) dz =

∫
C

(u + iv)(dx + i dy).

x

y

C

R

Figure 7

Here we have written f(z) and dz in real and imaginary parts:

f(z) = u + iv and dz = dx + i dy.

Then we can separate the integral into real and imaginary parts as∫
C

f(z) dz =

∫
C

(u dx − v dy) + i

∫
C

(v dx + u dy).

We often interpret real integrals in terms of area; now we define complex integrals in terms of line
integrals over paths in the complex plane. The line integrals are evaluated as described in 29.

Example 10
Obtain the complex integral:∫

C

z dz

where C is the straight line path from z = 1 + i to z = 3 + i. See Figure 8.

x

y

C

C1

C2

1 + i 3 + i

3 + 3i

Figure 8
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Solution

Here, since y is constant (y = 1) along the given path then z = x + i, implying that u = x and
v = 1. Also, as y is constant, dy = 0.

Therefore,∫
C

z dz =

∫
C

(u dx − v dy) + i

∫
C

(v dx + u dy)

=

∫ 3

1

x dx + i

∫ 3

1

1 dx

=

[
x2

2

]3

1

+ i

[
x

]3

1

=

(
9

2
− 1

2

)
+ i(3 − 1) = 4 + 2i.

Task

Evaluate

∫
C1

z dz where C1 is the straight line path from z = 3 + i to z = 3 + 3i.

First obtain expressions for u, v, dx and dy by finding an appropriate expression for z along the path:

Your solution

Answer

Along the path z = 3 + iy, implying that u = 3 and v = y. Also dz = 0 + idy.

Now find limits on y:

Your solution

Answer

The limits on y are: y = 1 to y = 3.

Now evaluate the integral:

Your solution
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Answer ∫
C1

z dz =

∫
C1

(u dx − v dy) + i

∫
C1

(v dx + u dy)

=

∫ 3

1

−y dy + i

∫ 3

1

3 dy

=

[
−y2

2

]3

1

+ i

[
3y

]3

1

=

(
−9

2
+

1

2

)
+ i(9 − 3)

= −4 + 6i.

Task

Evaluate

∫
C2

z dz where C2 is the straight line path from z = 1 + i to z = 3 + 3i.

Your solution

Answer
We first need to find the equation of the line C2 in the Argand plane.
We note that both points lie on the line y = x so the complex equation of the straight line is
z = x + ix giving u = x and v = x. Also dz = dx + idx = (1 + i)dx.

∴
∫

C2

z dz =

∫
C2

(x dx − x dx) + i

∫
C2

(x dx + x dx).

= i

∫
C2

(2x dx)

Next, we see that the limits on x are x = 1 to x = 3. We are now in a position to evaluate the
integral:∫

C2

z dz = i

∫ 3

1

2x dx = i

[
x2

]3

1

= i(9 − 1) = 8i.

Note that this result is the sum of the integrals along C and C1. You might have expected this.

A more intricate example now follows.
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Example 11
Evaluate

∫
C1

z2 dz where C1 is that part of the unit circle going anticlockwise from

the point z = 1 to the point z = i. See Figure 9.

x

y

C1
1

1

Figure 9

Solution

First, note that z2 = (x + iy)2 = x2 − y2 + 2xyi and dz = dx + i dy giving∫
C1

z2 dx =

∫
C1

{
(x2 − y2) dx − 2xy dy

}
+ i

∫
C1

{2xy dx + (x2 − y2)dy}.

This is obtained by simply expressing the integral in real and imaginary parts. These integrals cannot
be evaluated in this form since y and x are related. Instead we re-write them in terms of the single
variable θ.

Note that on the unit circle: x = cos θ, y = sin θ so that dx = − sin θ dθ and dy = cos θ dθ.

The expressions (x2 − y2) and 2xy can be expressed in terms of 2θ since

x2 − y2 = cos2 θ − sin2 θ ≡ cos 2θ 2xy = 2 cos θ sin θ ≡ sin 2θ.

Now as the point z moves from z = 1 to z = i along the path C1 the parameter θ changes from

θ = 0 to θ =
π

2
. Hence,∫

C1

f(z) dz =

∫ π
2

0

{− cos 2θ sin θ dθ − sin 2θ cos θ dθ}+ i

∫ π
2

0

{− sin 2θ sin θ dθ + cos 2θ cos θ dθ} .

We can simplify these daunting-looking integrals by using the trigonometric identities:

sin(A + B) ≡ sin A cos B + cos A sin B and cos(A + B) ≡ cos A cos B − sin A sin B.

We obtain (choosing A = 2θ and B = θ in both expressions):

− cos 2θ sin θ − sin 2θ cos θ ≡ −(sin θ cos 2θ + cos θ sin 2θ) ≡ − sin 3θ.

Also − sin 2θ sin θ + cos 2θ cos θ ≡ cos 3θ.

Now we can complete the evaluation of our integral:∫
C1

f(z) dx =

∫ π
2

0

(− sin 3θ)dθ + i

∫ π
2

0

cos 3θ dθ

=

[
1

3
cos 3θ

]π
2

0

+ i

[
1

3
sin 3θ

]π
2

0

= (0 − 1

3
) + i

(
−1

3
− 0

)
= −1

3
− 1

3
i ≡ −1

3
(1 + i).
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In the last Task we integrated z2 over a given path. We had to perform some intricate mathematics
to get the value. It would be convenient if there was a simpler way to obtain the value of such
complex integrals. This is explored in the following Tasks.

Task

Evaluate

[
1

3
z3

]i

1

Your solution

Answer

We obtain −1

3
(1 + i) again, which is the same result as from the previous Task.

It would seem that, by carrying out an analogue of real integration (simply integrating the function
and substituting in the limits) we can obtain the answer much more easily. Is this coincidence?

If you return to the first Task of this Section you will note:[
1

2
z2

]3+3i

1+i

=
1

2

{
(3 + 3i)2 − (1 + i)2

}
=

1

2
{9 + 18i − 9 − 1 − 2i + 1}

=
1

2
(16i) = 8i,

the result we obtained earlier.

We shall investigate these ‘coincidences’ in Section 26.5.

As a variation on this example, suppose that the path C1 is the entire circumference of the unit circle
travelled in an anti-clockwise direction. The limits are θ = 0 and θ = 2π. Hence∫

C1

f(z) dz =

∫ 2π

0

(− sin 3θ)dθ + i

∫ 2π

0

cos 3θ dθ

=

[
1

3
cos 3θ

]2π

0

+ i

[
1

3
sin 3θ

]2π

0

= (
1

3
− 1

3
) + i(0 − 0) = 0.

Is there an underlying reason for this result? (We shall see in Section 26.5.)

Another technique for evaluating integrals taken around the unit circle is shown in the next example,
in which we need to evaluate∮

C

1

z
dz where C is the unit circle.

Note the use of

∮
since we have a closed path; we could have used this notation earlier.
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Task

Evaluate

∮
C

1

z
dz where C is the unit circle.

First show that a point z on the unit circle can be written z = eiθ and hence find dz in terms of θ:

Your solution

Answer
On the unit circle a point (x, y) is such that x = cos θ, y = sin θ and hence z = cos θ + i sin θ
which, using De Moivre’s theorem, can be seen to be z = eiθ.

Then
dz

dθ
= ieiθ so that dz = ieiθdθ.

Now evaluate the integral

∮
C

1

z
dz.

Your solution

Answer∮
C

1

z
dz =

∫ 2π

0

1

eiθ
ieiθdθ =

∫ 2π

0

idθ = 2πi.

We now quote one of the most important results in complex integration which incorporates the last
result.

Key Point 1

If n is an integer and C is the circle centre z = z0 and radius r, that is, it has equation |z−z0| = r
then ∮

C

dz

(z − z0)n
=

{
0, n 6= 1;

2πi, n = 1.

Note that the result is independent of the value of r.
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Engineering Example 1

Two-dimensional fluid flow

Introduction

Functions of a complex variable find a very elegant application in the mathematical treatment of
two-dimensional fluid flow.

Problem in words

Find the forces and moments due to fluid flowing past a cylinder.

Mathematical statement of the problem

Figure 10 shows a cross section of a cylinder (not necessarily circular), whose boundary is C, placed
in a steady non-viscous flow of an ideal fluid; the flow takes place in planes parallel to the xy plane.
The cylinder is out of the plane of the paper. The flow of the fluid exerts forces and turning moments
upon the cylinder. Let X, Y be the components, in the x and y directions respectively, of the force
on the cylinder and let M be the anticlockwise moment (on the cylinder) about the orgin.

x

y

CM

X

Y

Figure 10

Blasius’ theorem (which we shall not prove) states that

X − iY =
1

2
iρ

∮
C

(
dw

dz

)2

dz and M = Re

{
− 1

2
ρ

∮
C

z

(
dw

dz

)2

dz

}
where Re denotes the real part, ρ is the (constant) density of the fluid and w = u+ iv is the complex
potential (see Section 261) for the flow. Both ρ and ω are presumed known.

Mathematical analysis

We shall find X,Y and M if the cylinder has a circular cross section and the boundary is specified
by |z| = a. Let the flow be a uniform stream with speed U .

Now, using a standard result, the complex potential describing this situation is:

w = U

(
z +

a2

z

)
so that

dw

dz
= U

(
1 − a2

z2

)
and

(
dw

dz

)2

= U2

(
1 − 2a2

z2
+

a4

z4

)
.

Using Key Point 1 with z0 = 0 :

X − iY =
1

2
iρ

∮
C

(
dw

dz

)2

dz =
1

2
iρU2

∮ (
1 − 2a2

z2
+

a4

z4

)
dz = 0 so X = Y = 0.
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Also, z

(
dw

dz

)2

= U2

(
z − 2a2

z
+

a4

z3

)
. The only term to contribute to M is

−2a2U2

z
.

Again using Key Point 1, this leads to −4πa2U2i and this has zero real part. Hence M = 0, also.

Interpretation

The implication is that no net force or moment acts on the cylinder. This is not so in practice. The
discrepancy arises from neglecting the viscosity of the fluid.

Exercises

1. Obtain the integral

∫
C

z dz along the straight-line paths

(a) from z = 2 + 2i to z = 5 + 2i

(b) from z = 5 + 2i to z = 5 + 5i

(c) from z = 2 + 2i to z = 5 + 5i

2. Find

∫
C

(z2 + z) dz where C is the part of the unit circle going anti-clockwise from the point

z = 1 to the point z = i.

3. Find

∮
C

f(z) dz where C is the circle |z − z0| = r for the cases

(a) f(z) =
1

z2
. z0 = 1

(b) f(z) =
1

(z − 1)2
, z0 = 1

(c) f(z) =
1

z − 1 − i
, z0 = 1 + i
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Answers

1. (a) Here y is constant along the given path z = x + 2i so that u = x and v = 2. Also
dy = 0. Thus∫

C

z dz =

∫
C

(udx − vdy) + i

∫
C

(vdx + udy) =

∫ 5

2

xdx + i

∫ 5

2

2dx

=

[
x2

2

]5

2

+ i

[
2x

]5

2

= (
25

2
− 4

2
) + i(10 − 4) =

21

2
+ 6i.

(b) Here dx = 0, v = y, u = 5. Thus∫
C

z dz =

∫ 5

2

(−y)dy + i

∫ 5

2

5dy

=

[
−y2

2

]5

2

+ i

[
5y

]5

2

= (−25

2
+

4

2
) + i(25 − 10) = −21

2
+ 15i.

(c) z = x + ix, u = x, v = x, dz = (1 + i)dx, so∫
C

z dz =

∫
C

(xdx − xdx) + i

∫
C

(xdx + xdx) = i

∫
C

2xdx = 2i

[
x2

2

]5

2

= 21i.

Note that the result in (c) is the sum of the results in (a) and (b).

2.

∫
C

(z2 + z) dz =

[
z3

3
+

z2

2

]i

1

= (
1

3
i3 +

i2

2
) − (

1

3
+

1

2
) = −4

3
− 1

3
i.

3. Using Key Point 1 we have (a) 0, (b) 0, (c) 2πi.

Note that in all cases the result is independent of r.
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Cauchy’s Theorem
�
�

�
�26.5

Introduction
In this Section we introduce Cauchy’s theorem which allows us to simplify the calculation of certain
contour integrals. A second result, known as Cauchy’s integral formula, allows us to evaluate some

integrals of the form

∮
C

f(z)

z − z0

dz where z0 lies inside C.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with the basic ideas of functions
of a complex variable

• be familiar with line integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• state and use Cauchy’s theorem

• state and use Cauchy’s integral formula
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1. Cauchy’s theorem

Simply-connected regions
A region is said to be simply-connected if any closed curve in that region can be shrunk to a point
without any part of it leaving a region. The interior of a square or a circle are examples of simply
connected regions. In Figure 11 (a) and (b) the shaded grey area is the region and a typical closed
curve is shown inside the region. In Figure 11 (c) the region contains a hole (the white area inside).
The shaded region between the two circles is not simply-connected; curve C1 can shrink to a point
but curve C2 cannot shrink to a point without leaving the region, due to the hole inside it.

(a)      (b)            (c)

C

C2

1

Figure 11

Key Point 2

Cauchy’s Theorem

The theorem states that if f(z) is analytic everywhere within a simply-connected region then:∮
C

f(z) dz = 0

for every simple closed path C lying in the region.

This is perhaps the most important theorem in the area of complex analysis.

As a straightforward example note that

∮
C

z2 dz = 0, where C is the unit circle, since z2 is analytic

everywhere (see Section 261). Indeed

∮
C

z2 dz = 0 for any simple contour: it need not be circular.

Consider the contour shown in Figure 12 and assume f(z) is analytic everywhere on and inside the
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contour C.

x

y

A

B

C

D

E

Figure 12
Then by analogy with real line integrals∫

AEB

f(z) dz +

∫
BDA

f(z) dz =

∮
C

f(z) dz = 0 by Cauchy’s theorem.

Therefore∫
AEB

f(z) dz = −
∫

BDA

f(z) dz =

∫
ADB

f(z) dz

(since reversing the direction of integration reverses the sign of the integral).

This implies that we may choose any path between A and B and the integral will have the same
value providing fff(zzz) is analytic in the region concerned.

Integrals of analytic functions only depend on the positions of the points A and B, not on the path
connecting them. This explains the ‘coincidences’ referred to previously in Section 26.4.

Task

Using ‘simple’ integration evaluate

∫ 1+2i

i

cos z dz, and explain why this is valid.

Your solution

Answer∫ 1+2i

i

cos z dz =

[
sin z

]1+2i

i

= sin(1 + 2i)− sin i.

This way of determining the integral is legitimate because cos z is analytic (everywhere).
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We now investigate what occurs when the closed path of integration does not necessarily lie within
a simply-connected region. Consider the situation described in Figure 13.

x

y

A

B

E

C1

C2

F

Figure 13

Let f(z) be analytic in the region bounded by the closed curves C1 and C2. The region is cut by the
line segment joining A and B.

Consider now the closed curve AEABFBA travelling in the direction indicated by the arrows. No
line can cross the cut AB and be regarded as remaining in the region. Because of the cut the shaded
region is simply connected. Cauchy’s theorem therefore applies (see Key Point 2).

Therefore∮
AEABFBA

f(z) dz = 0 since f(z) is analytic within and on the curve AEABFBA.

Note that∫
AB

f(z) dz = −
∫

BA

f(z) dz, being a simple change of direction.

Also, we can divide the closed curve into smaller sections:∮
AEABFBA

f(z) dz =

∫
AEA

f(z) dz +

∫
AB

f(z) dz +

∫
BFB

f(z) dz +

∫
BA

f(z) dz

=

∫
AEA

f(z) dz +

∫
BFB

f(z) dz = 0.

i.e. ∮
C1

f(z) dz −
∮

C2

f(z) dz = 0

(since we assume that closed paths are travelled anticlockwise).

Therefore

∮
C1

f(z) dz =

∮
C2

f(z) dz.

This allows us to evaluate

∮
C1

f(z) dz by replacing C1 by any curve C2 such that the region between

them contains no singularities (see Section 261) of f(z). Often we choose a circle for C2.
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Example 12
Determine

∮
C

6

z(z − 3)
dz where C is the curve |z− 3| = 5 shown in Figure 14.

x

y

C
C1C2

2 3

Figure 14

Solution

We observe that f(z) =
6

z(z − 3)
is analytic everywhere except at z = 0 and z = 3.

Let C1 be the circle of unit radius centred at z = 3 and C2 be the unit circle centered at the origin.
By analogy with the previous example we state that∮

C

6

z(z − 3)
dz =

∮
C1

6

z(z − 3)
dz +

∮
C2

6

z(z − 3)
dz.

(To show this you would need two cuts: from C to C1 and from C to C2.)

The remaining parts of this problem are presented as two Tasks.

Task

Expand
6

z(z − 3)
into partial functions.

Your solution

Answer

Let
6

z(z − 3)
≡ A

z
+

B

z − 3
≡ A(z − 3) + Bz

z(z − 3)
. Then A(z − 3) + Bz ≡ 6.

If z = 0 A(−3) = 6 ∴ A = −2. If z = 3 B × 3 = 6 ∴ B = 2.

∴
6

z(z − 3)
≡ −2

z
+

2

z − 3
.
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Thus:∮
C

6

z(z − 3)
dz =

∮
C1

2

z − 3
dz −

∮
C1

2

z
dz +

∮
C2

2

z − 3
dz −

∮
C2

2

z
dz = I1 − I2 + I3 − I4.

Task

Find the values of I1, I2, I3, I4, using Key Point 1 (page 35):

(a) Find the value of I1:

Your solution

Answer

Using Key Point 1 we find that I1 = 2× 2πi = 4πi.

(b) Find the value of I2:

Your solution

Answer

The function
1

z
is analytic inside and on C1 so that I2 = 0.

(c) Find the value of I3:

Your solution

Answer

The function
1

z − 3
is analytic inside and on C2 so I3 = 0.

(d) Find the value of I4:

Your solution

Answer

I4 = 4πi again using Key Point 1.

(e) Finally, calculate I = I1 − I2 + I3 − I4:

Your solution
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Answer∮
C

6 dz

z(z − 3)
= 4πi− 0 + 0− 4πi = 0.

Exercises

1. Evaluate

∫ 2+3i

1+i

sin z dz.

2. Determine

∮
C

4

z(z − 2)
dz where C is the contour |z − 2| = 4.

Answers

1.

∫ 2+3i

1+i

sin z dz =

[
− cos z

]2+3i

1+i

= cos(1 + i)− cos(2 + 3i) since sin z is analytic everywhere.

2.

x

y

C
C1C2

2 62

f(z) =
4

z(z − 2)
is analytic everywhere except at z = 0 and z = 2.

Call I =

∮
C

4

z(z − 2)
dz =

∮
C1

4

z(z − 2)
dz +

∮
C2

4

z(z − 2)
dz.

Now
4

z(z − 2)
≡ −2

z
+

2

z − 2
so that

I =

∮
C1

2

z − 2
dz −

∮
C1

2

z
dz +

∮
C2

2

z − 2
dz −

∮
C2

2

z
dz

= I1 + I2 + I3 + I4

I2 and I3 are zero because of analyticity.

I1 = 2× 2πi = 4πi, by Key Point 1 and I4 = −4πi likewise.

Hence I = 4πi + 0 + 0− 4πi = 0.
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2. Cauchy’s integral formula
This is a generalization of the result in Key Point 2:

Key Point 3

Cauchy’s Integral Formula

If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point z0

inside C, ∮
C

f(z)

z − z0

dz = 2πi f(z0).

Example 13
Evaluate

∮
C

z

z2 + 1
dz where C is the path shown in Figure 15:

C1 : |z − i| = 1
2

x

y

C1
i

i

Figure 15

Solution

We note that z2 + 1 ≡ (z + i)(z − i).

Let
z

z2 + 1
=

z

(z + i)(z − i)
=

z/(z + i)

z − i
.

The numerator z/(z + i) is analytic inside and on the path C1 so putting z0 = i in the Cauchy
integral formula (Key Point 3)∮

C1

z

z2 + 1
dz = 2πi

[
i

i + i

]
= 2πi.

1

2
= πi.
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Task

Evaluate

∮
C

z

z2 + 1
dz where C is the path (refer to the diagram)

(a) C2 : |z + i| = 1
2

(b) C3 : |z| = 2.

x

y

C

C2

i

i

3

(a) Use the Cauchy integral formula to find an expression for

∮
C2

z

z2 + 1
dz:

Your solution

Answer
z

z2 + 1
=

z/(z − i)

z + i
. The numerator is analytic inside and on the path C2 so putting z0 = −i in the

Cauchy integral formula gives∮
C2

z

z2 + 1
dz = 2πi

[
−i

−2i

]
= πi.

(b) Now find

∮
C3

z

z2 + 1
dz:

Your solution

Answer
By analogy with the previous part,∮

C3

z

z2 + 1
dz =

∮
C1

z

z2 + 1
dz +

∮
C2

z

z2 + 1
dz = πi + πi = 2πi.
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The derivative of an analytic function
If f(z) is analytic in a simply-connected region then at any interior point of the region, z0 say, the
derivatives of f(z) of any order exist and are themselves analytic (which illustrates what a powerful
property analyticity is!). The derivatives at the point z0 are given by Cauchy’s integral formula for
derivatives:

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz

where C is any simple closed curve, in the region, which encloses z0.
Note the case n = 1:

f ′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz.

Example 14
Evaluate the contour integral∮

C

z3

(z − 1)2
dz

where C is a contour which encloses the point z = 1.

Solution

Since f(z) =
z3

(z − 1)2
has a pole of order 2 at z = 1 then

∮
C

f(z) dz =

∮
C′

z3

(z − 1)2
dz

where C ′ is a circle centered at z = 1.

If g(z) = z3 then

∮
C

f(z) dz =

∮
C′

g(z)

(z − 1)2
dz

Since g(z) is analytic within and on the circle C ′ we use Cauchy’s integral formula for derivatives
to show that∮

C

z3

(z − 1)2
dz = 2πi× 1

1!
[g′(z)]z=1 = 2πi

[
3z2

]
z=1

= 6πi.
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Exercise

Evaluate

∮
C

z

z2 + 9
dz where C is the path:

(a) C1 : |z − 3i| = 1 (b) C2 : |z + 3i| = 1 (c) C3 : |z| = 6.

Answers

(a) We will use the fact that
z

z2 + 9
=

z

(z + 3i)(z − 3i)
=

z/(z + 3i)

z − 3i

The numerator
z

z + 3i
is analytic inside and on the path C1 so putting z0 = 3i in

Cauchy’s integral formula∮
C1

z

z2 + 9
dz = 2πi

[
3i

3i + 3i

]
= 2πi× 1

2
= πi.

(b) Here
z/(z − 3i)

z + 3i

The numerator is analytic inside and on the path C2 so putting z = −3i in Cauchy’s
integral formula:∮

C2

z

z2 + 9
dz = 2πi

[
−3i

−3i− 3i

]
= πi.

(c) The integral is the sum of the two previous integrals and has value 2πi.
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Singularities
and Residues

�
�

�
�26.6

Introduction
Taylor’s series for functions of a real variable is generalised here to the Laurent series for a function
of a complex variable, which includes terms of the form (z − z0)

−n.

The different types of singularity of a complex function f(z) are discussed and the definition of a
residue at a pole is given. The residue theorem is used to evaluate contour integrals where the only
singularities of f(z) inside the contour are poles.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with binomial and Taylor series

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• understand the concept of a Laurent

series

• find residues and use the residue theorem

50 HELM (2008):
Workbook 26: Functions of a Complex Variable



®

1. Taylor and Laurent series
Many of the results in the area of series of real variables can be extended into complex variables. As
an example, the concept of radius of convergence of a series is extended to the concept of a circle
of convergence. If the circle of convergence of a series of complex numbers is |z − z0| = ρ then
the series will converge if |z − z0| < ρ.

For example, consider the function

f(z) =
1

1− z

It has a singularity at z = 1. We can obtain the Maclaurin series, centered at z = 0, as

f(z) = 1 + z + z2 + z3 + . . .

The circle of convergence is |z| = 1.

The radius of convergence for a series centred on z = z0 is the distance between z0 and the nearest
singularity.

Laurent series
One of the shortcomings of Taylor series is that the circle of convergence is often only a part of the
region in which f(z) is analytic.

As an example, the series

1 + z + z2 + z3 + . . . converges to f(z) =
1

1− z

only inside the circle |||zzz||| === 111 even though f(z) is analytic everywhere except at zzz === 111.

The Laurent series is an attempt to represent f(z) as a series over as large a region as possible.
We expand the series around a point of singularity up to, but not including, the singularity itself.

Figure 16 shows an annulus of convergence r1 < |z − z0| < r2 within which the Laurent series
(which is an extension of the Taylor series) will converge. The extension includes negative powers of
(z − z0).

x

y

Cr1

r2

z0

Figure 16

Now, we state Laurent’s theorem in Key Point 4.
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Key Point 4

Laurent’s Theorem

If f(z) is analytic through a closed annulus D centred at z = z0 then at any point z inside D we
can write

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + . . .

+ b1(z − z0)
−1 + b2(z − z0)

−2 + . . .

where the coefficients an and bn (for each n) is given by

an =
1

2πi

∮
C

f(z)

(z − z0)n+1
dz, bn =

1

2πi

∮
C

f(z)

(z − z0)1−n
dz,

the integral being taken around any simple closed path C lying inside D and encircling the inner
boundary. (Refer to Figure 16.)

Example 15
Expand f(z) =

1

1− z
in terms of negative powers of z which will be valid if

|z| > 1.

Solution

First note that 1− z = −z

(
1− 1

z

)
so that

f(z) = − 1

z
(
1− 1

z

) = −1

z

(
1 +

1

z
+

1

z2
+

1

z3

)
= −1

z
− 1

z2
− 1

z3
− 1

z4
− . . .

This is valid for

∣∣∣∣1z
∣∣∣∣ < 1, that is,

1

|z|
< 1 or |z| > 1. Note that we used a binomial expansion rather

than the theorem itself. Also note that together with the earlier result we are now able to expand

f(z) =
1

1− z
everywhere, except for |z| = 1.
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Task

This Task concerns f(z) =
1

1 + z
.

(a) Using the binomial series, expand f(z) in terms of non-negative power of z:

Your solution

Answer

f(z) = (1 + z)−1 = 1− z + z2 − z3 + . . .

(b) State the values of z for which this expansion is valid:

Your solution

Answer

|z| < 1 (standard result for a GP).

(c) Using the identity 1 + z = z

(
1 +

1

z

)
expand f(z) =

1

1 + z
in terms of negative powers of z

and state the values of z for which your expansion is valid:

Your solution

Answer

f(z) =
1

z

(
1 +

1

z

) =
1

z

(
1 +

1

z

)−1

=
1

z

(
1− 1

z
+

1

z2
− 1

z3
+ . . .

)
=

1

z
− 1

z2
+

1

z3
− 1

z4
+ . . .

Valid for

∣∣∣∣1z
∣∣∣∣ < 1 i.e. |z| > 1 .

2. Classifying singularities
If the function f(z) has a singularity at z = z0, and in a neighbourhood of z0 (i.e. a region of the
complex plane which contains z0) there are no other singularities, then z0 is an isolated singularity
of f(z).
The principal part of the Laurent series is the part containing negative powers of (z − z0). If the
principal part has a finite number of terms say
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b1

z − z0

+
b2

(z − z0)2
+ . . . +

bm

(z − z0)m
and bm 6= 0

then f(z) has a pole of order mmm at z = z0 (we have written b1 for a−1, b2 for a−2 etc. for simplicity.)
Note that if b1 = b2 = . . . = 0 and bm 6= 0, the pole is still of order m.

A pole of order 1 is called a simple pole whilst a pole of order 2 is called a double pole. If the
principal part of the Laurent series has an infinite number of terms then z = z0 is called an isolated
essential singularity of f(z).
The function

f(z) =
i

z(z − i)
≡ 1

z − i
− 1

z

has a simple pole at z = 0 and another simple pole at z = i. The function e
1

z−2 has an isolated
essential singularity at z = 2. Some complex functions have non-isolated singularities called branch
points. An example of such a function is

√
z.

Task

Classify the singularities of the function f(z) =
2

z
− 1

z2
+

1

z + i
+

3

(z − i)4
.

Your solution

Answer

A pole of order 2 at z = 0, a simple pole at z = −i and a pole of order 4 at z = i.

Exercises

1. Expand f(z) =
1

2− z
in terms of negative powers of z to give a series which will be valid if

|z| > 2.

2. Classify the singularities of the function: f(z) =
1

z2
+

1

(z + i)2
− 2

(z + i)3
.

Answers

1. 2− z = −z(1− 2

z
) so that:

f(z) =
−1

z(1− 2
z
)

= −1

z
(1− 2

z
)−1 = −1

z
(1+

2

z
+

4

z2
+

8

z3
+ . . . ) = −1

z
− 2

z2
− 4

z3
− 8

z3
− . . .

This is valid for

∣∣∣∣2z
∣∣∣∣ < 1 or |z| > 2.

2. A double pole at z = 0 and a pole of order 3 at z = −i.
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3. The residue theorem
Suppose f(z) is a function which is analytic inside and on a closed contour C, except for a pole of

order m at z = z0, which lies inside C. To evaluate

∮
C

f(z) dz we can expand f(z) in a Laurent

series in powers of (z − z0). If we let Γ be a circle of centre z0 lying inside C then, as we saw in

Section 262,

∮
C

f(z) dz =

∫
Γ

f(z) dz.

From Key Point 1 in Section 26.4 we know that the integral of each of the positive and negative

powers of (z − z0) is zero with the exception of
b1

z − z0

and this has value 2πb1. Since it is the only

coefficient remaining after the integration, it is called the residue of f(z) at z = z0. It is given by

b1 =
1

2πi

∮
C

f(z) dz.

Calculating the residue, for any given function f(z) is an important task and we examine some results
concerning its determination for functions with simple poles, double poles and poles of order m.

Finding the residue

If f(z) has a simple pole at z = z0 then f(z) =
b1

z − z0

+ a0 + a1(z − z0) + a2(z − z0)
2 + . . .

so that (z − z0)f(z) = b1 + a0(z − z0) + a1(z − z0)
2 + a2(z − z0)

3 + . . .

Taking limits as z → z0, lim
z→z0

{(z − z0)f(z)} = b1.

For example, let f(z) =
1

z2 + 1
≡ 1

(z + i)(z − i)
≡

− 1
2i

z + i
+

1
2i

z − i
.

There are simple poles at z = −i and z = i. The residue at z = i is

lim
z→i

{
(z − i)

1

(z + i)(z − i)

}
= lim

z→i

(
1

z + i

)
=

1

2i
.

Similarly, the residue at z = −i is

lim
z→i

{
(z + i)

1

(z + i)(z − i)

}
= lim

z→−i

(
1

z − i

)
=
−1

2i
.

Task

This Task concerns f(z) =
1

z2 + 4
.

(a) Identify the singularities of f(z):

Your solution
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Answer

f(z) =
1

(z + 2i)(z − 2i)
=

− 1

4i
z + 2i

+

1

4i
z − 2i

. There are simple poles at z = −2i and z = 2i.

(b) Now find the residues of f(z) at z = 2i and at z = −2i:

Your solution

Answer

lim
z→2i

{
(z − 2i)

1

(z + 2i)(z − 2i)

}
= lim

z→2i

(
1

z + 2i

)
=

1

4i
.

Similarly at z = −2i.

lim
z→−2i

{
(z + 2i)

1

(z + 2i)(z − 2i)

}
= lim

z→−2i

(
1

z − 2i

)
= − 1

4i
.

In general the residue at a pole of order m at z = z0 is

b1 =
1

(m− 1)!
lim
z→z0

{
dm−1

dzm−1
[(z − z0)

mf(z)]

}
.

As an example, if f(z) =
z2 + 1

(z + 1)3
, f(z) has a pole of order 3 at z = −1 (m = 3).

We need first

d2

dz2

[
(z + 1)3 (z2 + 1)

(z + 1)3

]
=

d2

dz2
[z2 + 1] =

d

dz
[2z] = 2.

Then b1 =
1

2!
× 2 = 1.

We have a useful result (Key Point 5) which allows us to evaluate contour integrals quickly when
f(z) has only poles inside the contour.

Key Point 5

The Residue Theorem∮
C

f(z) dz = 2πi× (sum of the residues at the poles inside C).
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Example 16
Let f(z) =

1

z2 + 1
. Find the integrals

∮
C1

dz,

∮
C2

dz and

∮
C3

dz in which C1 is

the circle |z − i| = 1, C2 is the circle |z + i| = 1, and C3 is any path enclosing
both z = i and z = −i. See Figure 17.

x

y

C3
C1

C2

i

i

Figure 17

Solution

Figure 17 shows that only the pole at z = i lies inside C1. The residue at this pole is
1

2i
, as we

found earlier. Hence

∮
C1

f(z) dz = 2πi× 1

2i
= π.

Also, the residue at z = −i, the only pole inside C2, is − 1

2i
. Hence∮

C2

f(z) dz = −2πi× 1

2i
= −π.

Note that the contour C3 encloses both poles so that

∮
C3

f(z) dz = 2πi

(
1

2i
− 1

2i

)
= 0.

Exercises

1. Identify the singularities of f(z) =
1

z2(z2 + 9)
and find the residue at each of them.

2. Find the integral

∮
C

f(z) dz where f(z) =
1

z2 + 4
and C is

(a) the circle |z − 2i| = 1;

(b) the circle |z + 2i| = 1;

(c) any closed path enclosing both z = 2i and z = −2i.
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Answers

1. Double pole at z = 0, simple poles at z = 3i and z = −3i.

Residue at z = 3i

= lim
z→3i

{
(z − 3i)

1

z2(z + 3i)(z − 3i)

}
= lim

z→3i

{
1

z2(z + 3i)

}
=

1

9i2
× 1

6i
= − 1

54i
=

1

54
i.

Residue at z = −3i

= lim
z→−3i

{
(z + 3i)

1

z2(z + 3i)(z − 3i)

}
= lim

z→−3i

{
1

z2(z − 3i)

}
=

1

9i2
× 1

−6i
= − 1

54
i.

For the double pole at z = 0 we find
d

dz

{
(z − 0)2f(z)

}
=

d

dz

(
1

z2 + 9

)
=

−2z

(z2 + 9)2
.

Then, lim
z→0

(
−2z

(z2 + 9)2

)
= 0.

2.

x

y

C3

C1

C2

i

i

z = 0

f(z) =
1

(z + 2i)(z − 2i)

(a) Only the pole at z = 2i lies inside C1. The residue there is lim
z→2i

(
1

z + 2i

)
=

1

4i
.

Hence

∮
C1

f(z) dz = 2πi× 1

4i
=

π

2
.

(b) Only the pole at z = −2i lies inside C2. The residue there is lim
z→−2i

1

z − 2i
= − 1

4i
.

Hence

∮
C2

f(z) dz = 2πi× (− 1

4i
) = −π

2
.

(c) The contour C3 encloses both poles so that∮
C3

f(z) dz = 2πi

(
1

4i
− 1

4i

)
= 0.
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